1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A one-dimensional length, tagged with its units.
use num_traits;
// Euclid has its own Zero and One traits instead of of using the num_traits equivalents.
// Unfortunately, num_traits::Zero requires Add, which opens a bag of sad things:
// - Most importantly, for Point2D to implement Zero it would need to implement Add<Self> which we
// don't want (we allow "Point + Vector" and "Vector + Vector" semantics and purposefully disallow
// "Point + Point".
// - Some operations that require, say, One and Div (for example Scale::inv) currently return a
// type parameterized over T::Output which is ambiguous with num_traits::One because it inherits
// Mul which also has an Output associated type. To fix it need to complicate type signatures
// by using <T as Trait>::Output which makes the code and documentation harder to read.
//
// On the other hand, euclid::num::Zero/One are automatically implemented for all types that
// implement their num_traits counterpart. Euclid users never need to explicitly use
// euclid::num::Zero/One and can/should only manipulate the num_traits equivalents without risk
// of compatibility issues with euclid.
pub trait Zero {
fn zero() -> Self;
}
impl<T: num_traits::Zero> Zero for T {
fn zero() -> T {
num_traits::Zero::zero()
}
}
pub trait One {
fn one() -> Self;
}
impl<T: num_traits::One> One for T {
fn one() -> T {
num_traits::One::one()
}
}
/// Defines the nearest integer value to the original value.
pub trait Round: Copy {
/// Rounds to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[must_use]
fn round(self) -> Self;
}
/// Defines the biggest integer equal or lower than the original value.
pub trait Floor: Copy {
/// Rounds to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[must_use]
fn floor(self) -> Self;
}
/// Defines the smallest integer equal or greater than the original value.
pub trait Ceil: Copy {
/// Rounds to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[must_use]
fn ceil(self) -> Self;
}
macro_rules! num_int {
($ty:ty) => {
impl Round for $ty {
#[inline]
fn round(self) -> $ty {
self
}
}
impl Floor for $ty {
#[inline]
fn floor(self) -> $ty {
self
}
}
impl Ceil for $ty {
#[inline]
fn ceil(self) -> $ty {
self
}
}
};
}
macro_rules! num_float {
($ty:ty) => {
impl Round for $ty {
#[inline]
fn round(self) -> $ty {
(self + 0.5).floor()
}
}
impl Floor for $ty {
#[inline]
fn floor(self) -> $ty {
num_traits::Float::floor(self)
}
}
impl Ceil for $ty {
#[inline]
fn ceil(self) -> $ty {
num_traits::Float::ceil(self)
}
}
};
}
num_int!(i16);
num_int!(u16);
num_int!(i32);
num_int!(u32);
num_int!(i64);
num_int!(u64);
num_int!(isize);
num_int!(usize);
num_float!(f32);
num_float!(f64);