1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
use crate::repr::EnumSetTypeRepr;
use crate::traits::EnumSetType;
use crate::EnumSetTypeWithRepr;
use core::cmp::Ordering;
use core::fmt::{Debug, Display, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::Sum;
use core::ops::{
BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not, Sub, SubAssign,
};
#[cfg(feature = "serde")]
use {
serde2 as serde,
serde2::{Deserialize, Serialize},
};
/// An efficient set type for enums.
///
/// It is implemented using a bitset stored using the smallest integer that can fit all bits
/// in the underlying enum. In general, an enum variant with a discriminator of `n` is stored in
/// the nth least significant bit (corresponding with a mask of, e.g. `1 << enum as u32`).
///
/// # Numeric representation
///
/// `EnumSet` is internally implemented using integer types, and as such can be easily converted
/// from and to numbers.
///
/// Each bit of the underlying integer corresponds to at most one particular enum variant. If the
/// corresponding bit for a variant is set, it present in the set. Bits that do not correspond to
/// any variant are always unset.
///
/// By default, each enum variant is stored in a bit corresponding to its discriminator. An enum
/// variant with a discriminator of `n` is stored in the `n + 1`th least significant bit
/// (corresponding to a mask of e.g. `1 << enum as u32`).
///
/// # Array representation
///
/// Sets with more than 128 variants are instead stored with an underlying array of `u64`s. This
/// is treated as if it was a single large integer. The `n`th least significant bit of this integer
/// is stored in the `n % 64`th least significant bit of the `n / 64`th element in the array.
///
/// # Serialization
///
/// When the `serde` feature is enabled, `EnumSet`s can be serialized and deserialized using
/// the `serde` crate. The exact serialization format can be controlled with additional attributes
/// on the enum type. These attributes are valid regardless of whether the `serde` feature
/// is enabled.
///
/// By default, `EnumSet` is serialized by directly writing out a single integer containing the
/// numeric representation of the bitset. The integer type used is the smallest one that can fit
/// the largest variant in the enum. If no integer type is large enough, instead the `EnumSet` is
/// serialized as an array of `u64`s containing the array representation.
///
/// The `#[enumset(serialize_repr = "…")]` attribute can be used to override the representation
/// used. Valid values are as follows:
///
/// * `u8`, `u16`, `u32`, `u64`, and `u128` serialize the type as the corresponding integer type.
/// * `array` serializes the set as an list of `u64`s corresponding to the array representation.
/// * `list` serializes the set as a list of enum variants. This requires your enum type implement
/// [`Serialize`] and [`Deserialize`].
/// * `map` serializes the set as a map of enum variants to booleans. The set contains a value if
/// the boolean is `true`. This requires your enum type implement `Serialize` and `Deserialize`.
///
/// The representation used is determined statically at compile time, and there is currently no
/// support for reading different formats with the same deserializer.
///
/// By default, unknown bits are ignored and silently removed from the bitset. To override this
/// behavior, you can add a `#[enumset(serialize_deny_unknown)]` attribute. This will cause
/// deserialization to fail if an invalid bit is set.
///
/// # FFI, Safety and `repr`
///
/// If an enum type `T` is annotated with
/// [`#[enumset(repr = "…")]`](derive@crate::EnumSetType#options) where `…` is a primitive integer
/// type, then several things happen:
///
/// * `T` will implement
/// <code>[EnumSetTypeWithRepr](crate::traits::EnumSetTypeWithRepr)<Repr = R></code> in
/// addition to [`EnumSetType`].
/// * The `EnumSet` methods with `repr` in their name, such as [`as_repr`][EnumSet::as_repr] and
/// [`from_repr`][EnumSet::from_repr], will be available for `EnumSet<T>`.
/// * The in-memory representation of `EnumSet<T>` is guaranteed to be `R`.
///
/// That last guarantee makes it sound to send `EnumSet<T>` across an FFI boundary. For example:
///
/// ```
/// # use enumset::*;
/// #
/// # mod ffi_impl {
/// # // This example “foreign” function is actually written in Rust, but for the sake
/// # // of example, we'll pretend it's written in C.
/// # #[no_mangle]
/// # extern "C" fn some_foreign_function(set: u32) -> u32 {
/// # set & 0b100
/// # }
/// # }
/// #
/// extern "C" {
/// // This function is written in C like:
/// // uint32_t some_foreign_function(uint32_t set) { … }
/// fn some_foreign_function(set: EnumSet<MyEnum>) -> EnumSet<MyEnum>;
/// }
///
/// #[derive(Debug, EnumSetType)]
/// #[enumset(repr = "u32")]
/// enum MyEnum { A, B, C }
///
/// let set: EnumSet<MyEnum> = enum_set!(MyEnum::A | MyEnum::C);
///
/// let new_set: EnumSet<MyEnum> = unsafe { some_foreign_function(set) };
/// assert_eq!(new_set, enum_set!(MyEnum::C));
/// ```
///
/// When an `EnumSet<T>` is received via FFI, all bits that don't correspond to an enum variant
/// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`.
#[cfg_attr(
not(feature = "serde"),
doc = "\n\n",
doc = "[`Serialize`]: https://docs.rs/serde/latest/serde/trait.Serialize.html\n",
doc = "[`Deserialize`]: https://docs.rs/serde/latest/serde/trait.Deserialize.html\n"
)]
#[derive(Copy, Clone, PartialEq, Eq)]
#[repr(transparent)]
pub struct EnumSet<T: EnumSetType> {
#[doc(hidden)]
/// This is public due to the `enum_set!` macro.
/// This is **NOT** public API and may change at any time.
pub __priv_repr: T::Repr,
}
//region EnumSet operations
impl<T: EnumSetType> EnumSet<T> {
/// An empty `EnumSet`.
///
/// This is available as a constant for use in constant expressions.
pub const EMPTY: Self = EnumSet { __priv_repr: T::Repr::EMPTY };
/// An `EnumSet` containing all valid variants of the enum.
///
/// This is available as a constant for use in constant expressions.
pub const ALL: Self = EnumSet { __priv_repr: T::ALL_BITS };
/// Creates an empty `EnumSet`.
#[inline(always)]
pub fn new() -> Self {
Self::EMPTY
}
/// Returns an `EnumSet` containing a single element.
#[inline(always)]
pub fn only(t: T) -> Self {
let mut set = Self::new();
set.insert(t);
set
}
/// Creates an empty `EnumSet`.
///
/// This is an alias for [`EnumSet::new`].
#[inline(always)]
pub fn empty() -> Self {
Self::EMPTY
}
/// Returns an `EnumSet` containing all valid variants of the enum.
#[inline(always)]
pub fn all() -> Self {
Self::ALL
}
/// Total number of bits used by this type. Note that the actual amount of space used is
/// rounded up to the next highest integer type (`u8`, `u16`, `u32`, `u64`, or `u128`).
///
/// This is the same as [`EnumSet::variant_count`] except in enums with "sparse" variants.
/// (e.g. `enum Foo { A = 10, B = 20 }`)
#[inline(always)]
pub fn bit_width() -> u32 {
T::BIT_WIDTH
}
/// The number of valid variants that this type can contain.
///
/// This is the same as [`EnumSet::bit_width`] except in enums with "sparse" variants.
/// (e.g. `enum Foo { A = 10, B = 20 }`)
#[inline(always)]
pub fn variant_count() -> u32 {
T::VARIANT_COUNT
}
/// Returns the number of elements in this set.
#[inline(always)]
pub fn len(&self) -> usize {
self.__priv_repr.count_ones() as usize
}
/// Returns `true` if the set contains no elements.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.__priv_repr.is_empty()
}
/// Removes all elements from the set.
#[inline(always)]
pub fn clear(&mut self) {
self.__priv_repr = T::Repr::EMPTY;
}
/// Returns `true` if `self` has no elements in common with `other`. This is equivalent to
/// checking for an empty intersection.
#[inline(always)]
pub fn is_disjoint(&self, other: Self) -> bool {
(*self & other).is_empty()
}
/// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the
/// values in `other`.
#[inline(always)]
pub fn is_superset(&self, other: Self) -> bool {
(*self & other).__priv_repr == other.__priv_repr
}
/// Returns `true` if the set is a subset of another, i.e., `other` contains at least all
/// the values in `self`.
#[inline(always)]
pub fn is_subset(&self, other: Self) -> bool {
other.is_superset(*self)
}
/// Returns a set containing any elements present in either set.
#[inline(always)]
pub fn union(&self, other: Self) -> Self {
EnumSet { __priv_repr: self.__priv_repr | other.__priv_repr }
}
/// Returns a set containing every element present in both sets.
#[inline(always)]
pub fn intersection(&self, other: Self) -> Self {
EnumSet { __priv_repr: self.__priv_repr & other.__priv_repr }
}
/// Returns a set containing element present in `self` but not in `other`.
#[inline(always)]
pub fn difference(&self, other: Self) -> Self {
EnumSet { __priv_repr: self.__priv_repr.and_not(other.__priv_repr) }
}
/// Returns a set containing every element present in either `self` or `other`, but is not
/// present in both.
#[inline(always)]
pub fn symmetrical_difference(&self, other: Self) -> Self {
EnumSet { __priv_repr: self.__priv_repr ^ other.__priv_repr }
}
/// Returns a set containing all enum variants not in this set.
#[inline(always)]
pub fn complement(&self) -> Self {
EnumSet { __priv_repr: !self.__priv_repr & T::ALL_BITS }
}
/// Checks whether this set contains a value.
#[inline(always)]
pub fn contains(&self, value: T) -> bool {
self.__priv_repr.has_bit(value.enum_into_u32())
}
/// Adds a value to this set.
///
/// If the set did not have this value present, `true` is returned.
///
/// If the set did have this value present, `false` is returned.
#[inline(always)]
pub fn insert(&mut self, value: T) -> bool {
let contains = !self.contains(value);
self.__priv_repr.add_bit(value.enum_into_u32());
contains
}
/// Removes a value from this set. Returns whether the value was present in the set.
#[inline(always)]
pub fn remove(&mut self, value: T) -> bool {
let contains = self.contains(value);
self.__priv_repr.remove_bit(value.enum_into_u32());
contains
}
/// Adds all elements in another set to this one.
#[inline(always)]
pub fn insert_all(&mut self, other: Self) {
self.__priv_repr = self.__priv_repr | other.__priv_repr
}
/// Removes all values in another set from this one.
#[inline(always)]
pub fn remove_all(&mut self, other: Self) {
self.__priv_repr = self.__priv_repr.and_not(other.__priv_repr);
}
}
impl<T: EnumSetType> Default for EnumSet<T> {
/// Returns an empty set.
fn default() -> Self {
Self::new()
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> Sub<O> for EnumSet<T> {
type Output = Self;
#[inline(always)]
fn sub(self, other: O) -> Self::Output {
self.difference(other.into())
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> BitAnd<O> for EnumSet<T> {
type Output = Self;
#[inline(always)]
fn bitand(self, other: O) -> Self::Output {
self.intersection(other.into())
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> BitOr<O> for EnumSet<T> {
type Output = Self;
#[inline(always)]
fn bitor(self, other: O) -> Self::Output {
self.union(other.into())
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> BitXor<O> for EnumSet<T> {
type Output = Self;
#[inline(always)]
fn bitxor(self, other: O) -> Self::Output {
self.symmetrical_difference(other.into())
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> SubAssign<O> for EnumSet<T> {
#[inline(always)]
fn sub_assign(&mut self, rhs: O) {
*self = *self - rhs;
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> BitAndAssign<O> for EnumSet<T> {
#[inline(always)]
fn bitand_assign(&mut self, rhs: O) {
*self = *self & rhs;
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> BitOrAssign<O> for EnumSet<T> {
#[inline(always)]
fn bitor_assign(&mut self, rhs: O) {
*self = *self | rhs;
}
}
impl<T: EnumSetType, O: Into<EnumSet<T>>> BitXorAssign<O> for EnumSet<T> {
#[inline(always)]
fn bitxor_assign(&mut self, rhs: O) {
*self = *self ^ rhs;
}
}
impl<T: EnumSetType> Not for EnumSet<T> {
type Output = Self;
#[inline(always)]
fn not(self) -> Self::Output {
self.complement()
}
}
impl<T: EnumSetType> From<T> for EnumSet<T> {
fn from(t: T) -> Self {
EnumSet::only(t)
}
}
impl<T: EnumSetType> PartialEq<T> for EnumSet<T> {
fn eq(&self, other: &T) -> bool {
self.__priv_repr == EnumSet::only(*other).__priv_repr
}
}
impl<T: EnumSetType + Debug> Debug for EnumSet<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut is_first = true;
// Note: We don't use `.debug_struct` to avoid splitting lines when using `{:x}`
f.write_str("EnumSet(")?;
for v in self.iter() {
if !is_first {
f.write_str(" | ")?;
}
is_first = false;
v.fmt(f)?;
}
f.write_str(")")?;
Ok(())
}
}
impl<T: EnumSetType + Display> Display for EnumSet<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
let mut is_first = true;
for v in self.iter() {
if !is_first {
f.write_str(" | ")?;
}
is_first = false;
v.fmt(f)?;
}
Ok(())
}
}
#[allow(clippy::derived_hash_with_manual_eq)] // This impl exists to change trait bounds only.
impl<T: EnumSetType> Hash for EnumSet<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.__priv_repr.hash(state)
}
}
impl<T: EnumSetType> PartialOrd for EnumSet<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.__priv_repr.partial_cmp(&other.__priv_repr)
}
}
impl<T: EnumSetType> Ord for EnumSet<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.__priv_repr.cmp(&other.__priv_repr)
}
}
#[cfg(feature = "serde")]
impl<T: EnumSetType> Serialize for EnumSet<T> {
fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
T::serialize(*self, serializer)
}
}
#[cfg(feature = "serde")]
impl<'de, T: EnumSetType> Deserialize<'de> for EnumSet<T> {
fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
T::deserialize(deserializer)
}
}
//endregion
//region EnumSet conversions
impl<T: EnumSetType + EnumSetTypeWithRepr> EnumSet<T> {
/// Returns a `T::Repr` representing the elements of this set.
///
/// Unlike the other `as_*` methods, this method is zero-cost and guaranteed not to fail,
/// panic or truncate any bits.
///
/// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]`
/// annotation.
#[inline(always)]
pub fn as_repr(&self) -> <T as EnumSetTypeWithRepr>::Repr {
self.__priv_repr
}
/// Constructs a bitset from a `T::Repr` without checking for invalid bits.
///
/// Unlike the other `from_*` methods, this method is zero-cost and guaranteed not to fail,
/// panic or truncate any bits, provided the conditions under “Safety” are upheld.
///
/// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]`
/// annotation.
///
/// # Safety
///
/// All bits in the provided parameter `bits` that don't correspond to an enum variant of
/// `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`.
#[inline(always)]
pub unsafe fn from_repr_unchecked(bits: <T as EnumSetTypeWithRepr>::Repr) -> Self {
Self { __priv_repr: bits }
}
/// Constructs a bitset from a `T::Repr`.
///
/// If a bit that doesn't correspond to an enum variant is set, this
/// method will panic.
///
/// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]`
/// annotation.
#[inline(always)]
pub fn from_repr(bits: <T as EnumSetTypeWithRepr>::Repr) -> Self {
Self::try_from_repr(bits).expect("Bitset contains invalid variants.")
}
/// Attempts to constructs a bitset from a `T::Repr`.
///
/// If a bit that doesn't correspond to an enum variant is set, this
/// method will return `None`.
///
/// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]`
/// annotation.
#[inline(always)]
pub fn try_from_repr(bits: <T as EnumSetTypeWithRepr>::Repr) -> Option<Self> {
let mask = Self::all().__priv_repr;
if bits.and_not(mask).is_empty() {
Some(EnumSet { __priv_repr: bits })
} else {
None
}
}
/// Constructs a bitset from a `T::Repr`, ignoring invalid variants.
///
/// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]`
/// annotation.
#[inline(always)]
pub fn from_repr_truncated(bits: <T as EnumSetTypeWithRepr>::Repr) -> Self {
let mask = Self::all().as_repr();
let bits = bits & mask;
EnumSet { __priv_repr: bits }
}
}
/// Helper macro for generating conversion functions.
macro_rules! conversion_impls {
(
$(for_num!(
$underlying:ty, $underlying_str:expr,
$from_fn:ident $to_fn:ident $from_fn_opt:ident $to_fn_opt:ident,
$from:ident $try_from:ident $from_truncated:ident $from_unchecked:ident,
$to:ident $try_to:ident $to_truncated:ident
);)*
) => {
impl<T: EnumSetType> EnumSet<T> {$(
#[doc = "Returns a `"]
#[doc = $underlying_str]
#[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \
not fit in a `"]
#[doc = $underlying_str]
#[doc = "`, this method will panic."]
#[inline(always)]
pub fn $to(&self) -> $underlying {
self.$try_to().expect("Bitset will not fit into this type.")
}
#[doc = "Tries to return a `"]
#[doc = $underlying_str]
#[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \
not fit in a `"]
#[doc = $underlying_str]
#[doc = "`, this method will panic."]
#[inline(always)]
pub fn $try_to(&self) -> Option<$underlying> {
EnumSetTypeRepr::$to_fn_opt(&self.__priv_repr)
}
#[doc = "Returns a truncated `"]
#[doc = $underlying_str]
#[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \
not fit in a `"]
#[doc = $underlying_str]
#[doc = "`, this method will truncate any bits that don't fit."]
#[inline(always)]
pub fn $to_truncated(&self) -> $underlying {
EnumSetTypeRepr::$to_fn(&self.__priv_repr)
}
#[doc = "Constructs a bitset from a `"]
#[doc = $underlying_str]
#[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \
method will panic."]
#[inline(always)]
pub fn $from(bits: $underlying) -> Self {
Self::$try_from(bits).expect("Bitset contains invalid variants.")
}
#[doc = "Attempts to constructs a bitset from a `"]
#[doc = $underlying_str]
#[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \
method will return `None`."]
#[inline(always)]
pub fn $try_from(bits: $underlying) -> Option<Self> {
let bits = T::Repr::$from_fn_opt(bits);
let mask = T::ALL_BITS;
bits.and_then(|bits| if bits.and_not(mask).is_empty() {
Some(EnumSet { __priv_repr: bits })
} else {
None
})
}
#[doc = "Constructs a bitset from a `"]
#[doc = $underlying_str]
#[doc = "`, ignoring bits that do not correspond to a variant."]
#[inline(always)]
pub fn $from_truncated(bits: $underlying) -> Self {
let mask = Self::all().$to_truncated();
let bits = <T::Repr as EnumSetTypeRepr>::$from_fn(bits & mask);
EnumSet { __priv_repr: bits }
}
#[doc = "Constructs a bitset from a `"]
#[doc = $underlying_str]
#[doc = "`, without checking for invalid bits."]
///
/// # Safety
///
/// All bits in the provided parameter `bits` that don't correspond to an enum variant
/// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set
/// to `1`.
#[inline(always)]
pub unsafe fn $from_unchecked(bits: $underlying) -> Self {
EnumSet { __priv_repr: <T::Repr as EnumSetTypeRepr>::$from_fn(bits) }
}
)*}
}
}
conversion_impls! {
for_num!(u8, "u8",
from_u8 to_u8 from_u8_opt to_u8_opt,
from_u8 try_from_u8 from_u8_truncated from_u8_unchecked,
as_u8 try_as_u8 as_u8_truncated);
for_num!(u16, "u16",
from_u16 to_u16 from_u16_opt to_u16_opt,
from_u16 try_from_u16 from_u16_truncated from_u16_unchecked,
as_u16 try_as_u16 as_u16_truncated);
for_num!(u32, "u32",
from_u32 to_u32 from_u32_opt to_u32_opt,
from_u32 try_from_u32 from_u32_truncated from_u32_unchecked,
as_u32 try_as_u32 as_u32_truncated);
for_num!(u64, "u64",
from_u64 to_u64 from_u64_opt to_u64_opt,
from_u64 try_from_u64 from_u64_truncated from_u64_unchecked,
as_u64 try_as_u64 as_u64_truncated);
for_num!(u128, "u128",
from_u128 to_u128 from_u128_opt to_u128_opt,
from_u128 try_from_u128 from_u128_truncated from_u128_unchecked,
as_u128 try_as_u128 as_u128_truncated);
for_num!(usize, "usize",
from_usize to_usize from_usize_opt to_usize_opt,
from_usize try_from_usize from_usize_truncated from_usize_unchecked,
as_usize try_as_usize as_usize_truncated);
}
impl<T: EnumSetType> EnumSet<T> {
/// Returns an `[u64; O]` representing the elements of this set.
///
/// If the underlying bitset will not fit in a `[u64; O]`, this method will panic.
pub fn as_array<const O: usize>(&self) -> [u64; O] {
self.try_as_array()
.expect("Bitset will not fit into this type.")
}
/// Returns an `[u64; O]` representing the elements of this set.
///
/// If the underlying bitset will not fit in a `[u64; O]`, this method will instead return
/// `None`.
pub fn try_as_array<const O: usize>(&self) -> Option<[u64; O]> {
self.__priv_repr.to_u64_array_opt()
}
/// Returns an `[u64; O]` representing the elements of this set.
///
/// If the underlying bitset will not fit in a `[u64; O]`, this method will truncate any bits
/// that don't fit.
pub fn as_array_truncated<const O: usize>(&self) -> [u64; O] {
self.__priv_repr.to_u64_array()
}
/// Attempts to constructs a bitset from a `[u64; O]`.
///
/// If a bit that doesn't correspond to an enum variant is set, this method will panic.
pub fn from_array<const O: usize>(v: [u64; O]) -> Self {
Self::try_from_array(v).expect("Bitset contains invalid variants.")
}
/// Attempts to constructs a bitset from a `[u64; O]`.
///
/// If a bit that doesn't correspond to an enum variant is set, this method will return `None`.
pub fn try_from_array<const O: usize>(bits: [u64; O]) -> Option<Self> {
let bits = T::Repr::from_u64_array_opt::<O>(bits);
let mask = T::ALL_BITS;
bits.and_then(|bits| {
if bits.and_not(mask).is_empty() {
Some(EnumSet { __priv_repr: bits })
} else {
None
}
})
}
/// Constructs a bitset from a `[u64; O]`, ignoring bits that do not correspond to a variant.
pub fn from_array_truncated<const O: usize>(bits: [u64; O]) -> Self {
let bits = T::Repr::from_u64_array(bits) & T::ALL_BITS;
EnumSet { __priv_repr: bits }
}
/// Constructs a bitset from a `[u64; O]`, without checking for invalid bits.
///
/// # Safety
///
/// All bits in the provided parameter `bits` that don't correspond to an enum variant
/// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set
/// to `1`.
#[inline(always)]
pub unsafe fn from_array_unchecked<const O: usize>(bits: [u64; O]) -> Self {
EnumSet { __priv_repr: T::Repr::from_u64_array(bits) }
}
/// Returns a `Vec<u64>` representing the elements of this set.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn to_vec(&self) -> alloc::vec::Vec<u64> {
let mut vec = alloc::vec![0; T::Repr::PREFERRED_ARRAY_LEN];
self.__priv_repr.to_u64_slice(&mut vec);
vec
}
/// Copies the elements of this set into a `&mut [u64]`.
///
/// If the underlying bitset will not fit in the provided slice, this method will panic.
pub fn copy_into_slice(&self, data: &mut [u64]) {
self.try_copy_into_slice(data)
.expect("Bitset will not fit into slice.")
}
/// Copies the elements of this set into a `&mut [u64]`.
///
/// If the underlying bitset will not fit in the provided slice, this method will return
/// `None`. Otherwise, it will return `Some(())`.
#[must_use]
pub fn try_copy_into_slice(&self, data: &mut [u64]) -> Option<()> {
self.__priv_repr.to_u64_slice_opt(data)
}
/// Copies the elements of this set into a `&mut [u64]`.
///
/// If the underlying bitset will not fit in the provided slice, this method will truncate any
/// bits that don't fit.
pub fn copy_into_slice_truncated(&self, data: &mut [u64]) {
self.__priv_repr.to_u64_slice(data)
}
/// Attempts to constructs a bitset from a `&[u64]`.
///
/// If a bit that doesn't correspond to an enum variant is set, this method will panic.
pub fn from_slice(v: &[u64]) -> Self {
Self::try_from_slice(v).expect("Bitset contains invalid variants.")
}
/// Attempts to constructs a bitset from a `&[u64]`.
///
/// If a bit that doesn't correspond to an enum variant is set, this method will return `None`.
pub fn try_from_slice(bits: &[u64]) -> Option<Self> {
let bits = T::Repr::from_u64_slice_opt(bits);
let mask = T::ALL_BITS;
bits.and_then(|bits| {
if bits.and_not(mask).is_empty() {
Some(EnumSet { __priv_repr: bits })
} else {
None
}
})
}
/// Constructs a bitset from a `&[u64]`, ignoring bits that do not correspond to a variant.
pub fn from_slice_truncated(bits: &[u64]) -> Self {
let bits = T::Repr::from_u64_slice(bits) & T::ALL_BITS;
EnumSet { __priv_repr: bits }
}
/// Constructs a bitset from a `&[u64]`, without checking for invalid bits.
///
/// # Safety
///
/// All bits in the provided parameter `bits` that don't correspond to an enum variant
/// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set
/// to `1`.
#[inline(always)]
pub unsafe fn from_slice_unchecked(bits: &[u64]) -> Self {
EnumSet { __priv_repr: T::Repr::from_u64_slice(bits) }
}
}
//endregion
//region EnumSet iter
/// The iterator used by [`EnumSet`]s.
#[derive(Clone, Debug)]
pub struct EnumSetIter<T: EnumSetType> {
iter: <T::Repr as EnumSetTypeRepr>::Iter,
}
impl<T: EnumSetType> EnumSetIter<T> {
fn new(set: EnumSet<T>) -> EnumSetIter<T> {
EnumSetIter { iter: set.__priv_repr.iter() }
}
}
impl<T: EnumSetType> EnumSet<T> {
/// Iterates the contents of the set in order from the least significant bit to the most
/// significant bit.
///
/// Note that iterator invalidation is impossible as the iterator contains a copy of this type,
/// rather than holding a reference to it.
pub fn iter(&self) -> EnumSetIter<T> {
EnumSetIter::new(*self)
}
}
impl<T: EnumSetType> Iterator for EnumSetIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|x| unsafe { T::enum_from_u32(x) })
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<T: EnumSetType> DoubleEndedIterator for EnumSetIter<T> {
fn next_back(&mut self) -> Option<Self::Item> {
self.iter
.next_back()
.map(|x| unsafe { T::enum_from_u32(x) })
}
}
impl<T: EnumSetType> ExactSizeIterator for EnumSetIter<T> {}
impl<T: EnumSetType> Extend<T> for EnumSet<T> {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
iter.into_iter().for_each(|v| {
self.insert(v);
});
}
}
impl<T: EnumSetType> FromIterator<T> for EnumSet<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut set = EnumSet::default();
set.extend(iter);
set
}
}
impl<T: EnumSetType> Extend<EnumSet<T>> for EnumSet<T> {
fn extend<I: IntoIterator<Item = EnumSet<T>>>(&mut self, iter: I) {
iter.into_iter().for_each(|v| {
self.insert_all(v);
});
}
}
impl<T: EnumSetType> FromIterator<EnumSet<T>> for EnumSet<T> {
fn from_iter<I: IntoIterator<Item = EnumSet<T>>>(iter: I) -> Self {
let mut set = EnumSet::default();
set.extend(iter);
set
}
}
impl<T: EnumSetType> IntoIterator for EnumSet<T> {
type Item = T;
type IntoIter = EnumSetIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<T: EnumSetType> Sum for EnumSet<T> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(EnumSet::empty(), |a, v| a | v)
}
}
impl<'a, T: EnumSetType> Sum<&'a EnumSet<T>> for EnumSet<T> {
fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.fold(EnumSet::empty(), |a, v| a | *v)
}
}
impl<T: EnumSetType> Sum<T> for EnumSet<T> {
fn sum<I: Iterator<Item = T>>(iter: I) -> Self {
iter.fold(EnumSet::empty(), |a, v| a | v)
}
}
impl<'a, T: EnumSetType> Sum<&'a T> for EnumSet<T> {
fn sum<I: Iterator<Item = &'a T>>(iter: I) -> Self {
iter.fold(EnumSet::empty(), |a, v| a | *v)
}
}
//endregion