1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
use dioxus_core::ScopeState;
use std::{
    cell::{Cell, Ref, RefCell, RefMut},
    rc::Rc,
    sync::Arc,
};

/// `use_ref` is a key foundational hook for storing state in Dioxus.
///
/// It is different that `use_state` in that the value stored is not "immutable".
/// Instead, UseRef is designed to store larger values that will be mutated at will.
///
/// ## Writing Values
///
/// Generally, `use_ref` is just a wrapper around a RefCell that tracks mutable
/// writes through the `write` method. Whenever `write` is called, the component
/// that initialized the hook will be marked as "dirty".
///
/// ```rust, no_run
/// let val = use_ref(|| HashMap::<u32, String>::new());
///
/// // using `write` will give us a `RefMut` to the inner value, which we can call methods on
/// // This marks the component as "dirty"
/// val.write().insert(1, "hello".to_string());
/// ```
///
/// You can avoid this default behavior with `write_silent`
///
/// ```rust, no_run
/// // with `write_silent`, the component will not be re-rendered
/// val.write_silent().insert(2, "goodbye".to_string());
/// ```
///
/// ## Reading Values
///
/// To read values out of the refcell, you can use the `read` method which will retrun a `Ref`.
///
/// ```rust, no_run
/// let map: Ref<_> = val.read();
///
/// let item = map.get(&1);
/// ```
///
/// To get an &T out of the RefCell, you need to "reborrow" through the Ref:
///
/// ```rust, no_run
/// let read = val.read();
/// let map = &*read;
/// ```
///
/// ## Collections and iteration
///
/// A common usecase for `use_ref` is to store a large amount of data in a component.
/// Typically this will be a collection like a HashMap or a Vec. To create new
/// elements from the collection, we can use `read()` directly in our rsx!.
///
/// ```rust, no_run
/// rsx!{
///     val.read().iter().map(|(k, v)| {
///         rsx!{ key: "{k}", "{v}" }
///     })
/// }
/// ```
///
/// If you are generating elements outside of `rsx!` then you might need to call
/// "render" inside the iterator. For some cases you might need to collect into
/// a temporary Vec.
///
/// ```rust, no_run
/// let items = val.read().iter().map(|(k, v)| {
///     cx.render(rsx!{ key: "{k}", "{v}" })
/// });
///
/// // collect into a Vec
///
/// let items: Vec<Element> = items.collect();
/// ```
///
/// ## Use in Async
///
/// To access values from a `UseRef` in an async context, you need to detach it
/// from the current scope's lifetime, making it a `'static` value. This is done
/// by simply calling `to_owned` or `clone`.
///
/// ```rust, no_run
/// let val = use_ref(|| HashMap::<u32, String>::new());
///
/// cx.spawn({
///     let val = val.clone();
///     async move {
///         some_work().await;
///         val.write().insert(1, "hello".to_string());
///     }
/// })
/// ```
///
/// If you're working with lots of values like UseState and UseRef, you can use the
/// `to_owned!` macro to make it easier to write the above code.
///
/// ```rust, no_run
/// let val1 = use_ref(|| HashMap::<u32, String>::new());
/// let val2 = use_ref(|| HashMap::<u32, String>::new());
/// let val3 = use_ref(|| HashMap::<u32, String>::new());
///
/// cx.spawn({
///     to_owned![val1, val2, val3];
///     async move {
///         some_work().await;
///         val.write().insert(1, "hello".to_string());
///     }
/// })
/// ```
#[must_use]
pub fn use_ref<T: 'static>(cx: &ScopeState, initialize_refcell: impl FnOnce() -> T) -> &UseRef<T> {
    let hook = cx.use_hook(|| UseRef {
        update: cx.schedule_update(),
        value: Rc::new(RefCell::new(initialize_refcell())),
        dirty: Rc::new(Cell::new(false)),
        gen: 0,
    });

    if hook.dirty.get() {
        hook.gen += 1;
        hook.dirty.set(false);
    }

    hook
}

/// A type created by the [`use_ref`] hook. See its documentation for more details.
pub struct UseRef<T> {
    update: Arc<dyn Fn()>,
    value: Rc<RefCell<T>>,
    dirty: Rc<Cell<bool>>,
    gen: usize,
}

impl<T> Clone for UseRef<T> {
    fn clone(&self) -> Self {
        Self {
            update: self.update.clone(),
            value: self.value.clone(),
            dirty: self.dirty.clone(),
            gen: self.gen,
        }
    }
}

impl<T> UseRef<T> {
    /// Read the value in the RefCell into a `Ref`. If this method is called
    /// while other values are still being `read` or `write`, then your app will crash.
    ///
    /// Be very careful when working with this method. If you can, consider using
    /// the `with` and `with_mut` methods instead, choosing to render Elements
    /// during the read calls.
    pub fn read(&self) -> Ref<'_, T> {
        self.value.borrow()
    }

    /// Mutably unlock the value in the RefCell. This will mark the component as "dirty"
    ///
    /// Uses to `write` should be as short as possible.
    ///
    /// Be very careful when working with this method. If you can, consider using
    /// the `with` and `with_mut` methods instead, choosing to render Elements
    /// during the read and write calls.
    pub fn write(&self) -> RefMut<'_, T> {
        self.needs_update();
        self.value.borrow_mut()
    }

    /// Set the curernt value to `new_value`. This will mark the component as "dirty"
    ///
    /// This change will propagate immediately, so any other contexts that are
    /// using this RefCell will also be affected. If called during an async context,
    /// the component will not be re-rendered until the next `.await` call.
    pub fn set(&self, new: T) {
        *self.value.borrow_mut() = new;
        self.needs_update();
    }

    /// Mutably unlock the value in the RefCell. This will not mark the component as dirty.
    /// This is useful if you want to do some work without causing the component to re-render.
    ///
    /// Uses to `write` should be as short as possible.
    ///
    /// Be very careful when working with this method. If you can, consider using
    /// the `with` and `with_mut` methods instead, choosing to render Elements
    pub fn write_silent(&self) -> RefMut<'_, T> {
        self.value.borrow_mut()
    }

    /// Take a reference to the inner value termporarily and produce a new value
    ///
    /// Note: You can always "reborrow" the value through the RefCell.
    /// This method just does it for you automatically.
    ///
    /// ```rust, no_run
    /// let val = use_ref(|| HashMap::<u32, String>::new());
    ///
    ///
    /// // use reborrowing
    /// let inner = &*val.read();
    ///
    /// // or, be safer and use `with`
    /// val.with(|i| println!("{:?}", i));
    /// ```
    pub fn with<O>(&self, immutable_callback: impl FnOnce(&T) -> O) -> O {
        immutable_callback(&*self.read())
    }

    /// Take a reference to the inner value termporarily and produce a new value,
    /// modifying the original in place.
    ///
    /// Note: You can always "reborrow" the value through the RefCell.
    /// This method just does it for you automatically.
    ///
    /// ```rust, no_run
    /// let val = use_ref(|| HashMap::<u32, String>::new());
    ///
    ///
    /// // use reborrowing
    /// let inner = &mut *val.write();
    ///
    /// // or, be safer and use `with`
    /// val.with_mut(|i| i.insert(1, "hi"));
    /// ```
    pub fn with_mut<O>(&self, mutable_callback: impl FnOnce(&mut T) -> O) -> O {
        mutable_callback(&mut *self.write())
    }

    /// Call the inner callback to mark the originator component as dirty.
    ///
    /// This will cause the component to be re-rendered after the current scope
    /// has ended or the current async task has been yielded through await.
    pub fn needs_update(&self) {
        self.dirty.set(true);
        (self.update)();
    }
}

// UseRef memoizes not on value but on cell
// Memoizes on "generation" - so it will cause a re-render if the value changes
impl<T> PartialEq for UseRef<T> {
    fn eq(&self, other: &Self) -> bool {
        if Rc::ptr_eq(&self.value, &other.value) {
            self.gen == other.gen
        } else {
            false
        }
    }
}