1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
use dioxus_core::ScopeState;
use std::{
cell::{Cell, Ref, RefCell, RefMut},
rc::Rc,
sync::Arc,
};
/// `use_ref` is a key foundational hook for storing state in Dioxus.
///
/// It is different that `use_state` in that the value stored is not "immutable".
/// Instead, UseRef is designed to store larger values that will be mutated at will.
///
/// ## Writing Values
///
/// Generally, `use_ref` is just a wrapper around a RefCell that tracks mutable
/// writes through the `write` method. Whenever `write` is called, the component
/// that initialized the hook will be marked as "dirty".
///
/// ```rust, no_run
/// let val = use_ref(|| HashMap::<u32, String>::new());
///
/// // using `write` will give us a `RefMut` to the inner value, which we can call methods on
/// // This marks the component as "dirty"
/// val.write().insert(1, "hello".to_string());
/// ```
///
/// You can avoid this default behavior with `write_silent`
///
/// ```rust, no_run
/// // with `write_silent`, the component will not be re-rendered
/// val.write_silent().insert(2, "goodbye".to_string());
/// ```
///
/// ## Reading Values
///
/// To read values out of the refcell, you can use the `read` method which will retrun a `Ref`.
///
/// ```rust, no_run
/// let map: Ref<_> = val.read();
///
/// let item = map.get(&1);
/// ```
///
/// To get an &T out of the RefCell, you need to "reborrow" through the Ref:
///
/// ```rust, no_run
/// let read = val.read();
/// let map = &*read;
/// ```
///
/// ## Collections and iteration
///
/// A common usecase for `use_ref` is to store a large amount of data in a component.
/// Typically this will be a collection like a HashMap or a Vec. To create new
/// elements from the collection, we can use `read()` directly in our rsx!.
///
/// ```rust, no_run
/// rsx!{
/// val.read().iter().map(|(k, v)| {
/// rsx!{ key: "{k}", "{v}" }
/// })
/// }
/// ```
///
/// If you are generating elements outside of `rsx!` then you might need to call
/// "render" inside the iterator. For some cases you might need to collect into
/// a temporary Vec.
///
/// ```rust, no_run
/// let items = val.read().iter().map(|(k, v)| {
/// cx.render(rsx!{ key: "{k}", "{v}" })
/// });
///
/// // collect into a Vec
///
/// let items: Vec<Element> = items.collect();
/// ```
///
/// ## Use in Async
///
/// To access values from a `UseRef` in an async context, you need to detach it
/// from the current scope's lifetime, making it a `'static` value. This is done
/// by simply calling `to_owned` or `clone`.
///
/// ```rust, no_run
/// let val = use_ref(|| HashMap::<u32, String>::new());
///
/// cx.spawn({
/// let val = val.clone();
/// async move {
/// some_work().await;
/// val.write().insert(1, "hello".to_string());
/// }
/// })
/// ```
///
/// If you're working with lots of values like UseState and UseRef, you can use the
/// `to_owned!` macro to make it easier to write the above code.
///
/// ```rust, no_run
/// let val1 = use_ref(|| HashMap::<u32, String>::new());
/// let val2 = use_ref(|| HashMap::<u32, String>::new());
/// let val3 = use_ref(|| HashMap::<u32, String>::new());
///
/// cx.spawn({
/// to_owned![val1, val2, val3];
/// async move {
/// some_work().await;
/// val.write().insert(1, "hello".to_string());
/// }
/// })
/// ```
#[must_use]
pub fn use_ref<T: 'static>(cx: &ScopeState, initialize_refcell: impl FnOnce() -> T) -> &UseRef<T> {
let hook = cx.use_hook(|| UseRef {
update: cx.schedule_update(),
value: Rc::new(RefCell::new(initialize_refcell())),
dirty: Rc::new(Cell::new(false)),
gen: 0,
});
if hook.dirty.get() {
hook.gen += 1;
hook.dirty.set(false);
}
hook
}
/// A type created by the [`use_ref`] hook. See its documentation for more details.
pub struct UseRef<T> {
update: Arc<dyn Fn()>,
value: Rc<RefCell<T>>,
dirty: Rc<Cell<bool>>,
gen: usize,
}
impl<T> Clone for UseRef<T> {
fn clone(&self) -> Self {
Self {
update: self.update.clone(),
value: self.value.clone(),
dirty: self.dirty.clone(),
gen: self.gen,
}
}
}
impl<T> UseRef<T> {
/// Read the value in the RefCell into a `Ref`. If this method is called
/// while other values are still being `read` or `write`, then your app will crash.
///
/// Be very careful when working with this method. If you can, consider using
/// the `with` and `with_mut` methods instead, choosing to render Elements
/// during the read calls.
pub fn read(&self) -> Ref<'_, T> {
self.value.borrow()
}
/// Mutably unlock the value in the RefCell. This will mark the component as "dirty"
///
/// Uses to `write` should be as short as possible.
///
/// Be very careful when working with this method. If you can, consider using
/// the `with` and `with_mut` methods instead, choosing to render Elements
/// during the read and write calls.
pub fn write(&self) -> RefMut<'_, T> {
self.needs_update();
self.value.borrow_mut()
}
/// Set the curernt value to `new_value`. This will mark the component as "dirty"
///
/// This change will propagate immediately, so any other contexts that are
/// using this RefCell will also be affected. If called during an async context,
/// the component will not be re-rendered until the next `.await` call.
pub fn set(&self, new: T) {
*self.value.borrow_mut() = new;
self.needs_update();
}
/// Mutably unlock the value in the RefCell. This will not mark the component as dirty.
/// This is useful if you want to do some work without causing the component to re-render.
///
/// Uses to `write` should be as short as possible.
///
/// Be very careful when working with this method. If you can, consider using
/// the `with` and `with_mut` methods instead, choosing to render Elements
pub fn write_silent(&self) -> RefMut<'_, T> {
self.value.borrow_mut()
}
/// Take a reference to the inner value termporarily and produce a new value
///
/// Note: You can always "reborrow" the value through the RefCell.
/// This method just does it for you automatically.
///
/// ```rust, no_run
/// let val = use_ref(|| HashMap::<u32, String>::new());
///
///
/// // use reborrowing
/// let inner = &*val.read();
///
/// // or, be safer and use `with`
/// val.with(|i| println!("{:?}", i));
/// ```
pub fn with<O>(&self, immutable_callback: impl FnOnce(&T) -> O) -> O {
immutable_callback(&*self.read())
}
/// Take a reference to the inner value termporarily and produce a new value,
/// modifying the original in place.
///
/// Note: You can always "reborrow" the value through the RefCell.
/// This method just does it for you automatically.
///
/// ```rust, no_run
/// let val = use_ref(|| HashMap::<u32, String>::new());
///
///
/// // use reborrowing
/// let inner = &mut *val.write();
///
/// // or, be safer and use `with`
/// val.with_mut(|i| i.insert(1, "hi"));
/// ```
pub fn with_mut<O>(&self, mutable_callback: impl FnOnce(&mut T) -> O) -> O {
mutable_callback(&mut *self.write())
}
/// Call the inner callback to mark the originator component as dirty.
///
/// This will cause the component to be re-rendered after the current scope
/// has ended or the current async task has been yielded through await.
pub fn needs_update(&self) {
self.dirty.set(true);
(self.update)();
}
}
// UseRef memoizes not on value but on cell
// Memoizes on "generation" - so it will cause a re-render if the value changes
impl<T> PartialEq for UseRef<T> {
fn eq(&self, other: &Self) -> bool {
if Rc::ptr_eq(&self.value, &other.value) {
self.gen == other.gen
} else {
false
}
}
}