1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
//! A pointer type for bump allocation.
//!
//! [`Box<'a, T>`] provides the simplest form of
//! bump allocation in `bumpalo`. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//!
//! let b = Bump::new();
//!
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new_in(val, &b);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//!
//! let b = Bump::new();
//!
//! let boxed: Box<u8> = Box::new_in(5, &b);
//! let val: u8 = *boxed;
//! ```
//!
//! Running [`Drop`] implementations on bump-allocated values:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//! use std::sync::atomic::{AtomicUsize, Ordering};
//!
//! static NUM_DROPPED: AtomicUsize = AtomicUsize::new(0);
//!
//! struct CountDrops;
//!
//! impl Drop for CountDrops {
//!     fn drop(&mut self) {
//!         NUM_DROPPED.fetch_add(1, Ordering::SeqCst);
//!     }
//! }
//!
//! // Create a new bump arena.
//! let bump = Bump::new();
//!
//! // Create a `CountDrops` inside the bump arena.
//! let mut c = Box::new_in(CountDrops, &bump);
//!
//! // No `CountDrops` have been dropped yet.
//! assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 0);
//!
//! // Drop our `Box<CountDrops>`.
//! drop(c);
//!
//! // Its `Drop` implementation was run, and so `NUM_DROPS` has been incremented.
//! assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 1);
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//!
//! let b = Bump::new();
//!
//! #[derive(Debug)]
//! enum List<'a, T> {
//!     Cons(T, Box<'a, List<'a, T>>),
//!     Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::new_in(List::Cons(2, Box::new_in(List::Nil, &b)), &b));
//! println!("{:?}", list);
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a [`Box<'a, T>`], which has a defined size, we know how
//! big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the provided [`Bump`] allocator for
//! its allocation. It is valid to convert both ways between a [`Box`] and a
//! pointer allocated with the [`Bump`] allocator, given that the
//! [`Layout`] used with the allocator is correct for the type. More precisely,
//! a `value: *mut T` that has been allocated with the [`Bump`] allocator
//! with `Layout::for_value(&*value)` may be converted into a box using
//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
//! T` obtained from [`Box::<T>::into_raw`] will be deallocated by the
//! [`Bump`] allocator with [`Layout::for_value(&*value)`].
//!
//! Note that roundtrip `Box::from_raw(Box::into_raw(b))` looses the lifetime bound to the
//! [`Bump`] immutable borrow which guarantees that the allocator will not be reset
//! and memory will not be freed.
//!
//! [dereferencing]: https://doc.rust-lang.org/std/ops/trait.Deref.html
//! [`Box`]: struct.Box.html
//! [`Box<'a, T>`]: struct.Box.html
//! [`Box::<T>::from_raw(value)`]: struct.Box.html#method.from_raw
//! [`Box::<T>::into_raw`]: struct.Box.html#method.into_raw
//! [`Bump`]: ../struct.Bump.html
//! [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
//! [`Layout`]: https://doc.rust-lang.org/std/alloc/struct.Layout.html
//! [`Layout::for_value(&*value)`]: https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.for_value

use {
    crate::Bump,
    {
        core::{
            any::Any,
            borrow,
            cmp::Ordering,
            convert::TryFrom,
            future::Future,
            hash::{Hash, Hasher},
            iter::FusedIterator,
            mem::ManuallyDrop,
            ops::{Deref, DerefMut},
            pin::Pin,
            task::{Context, Poll},
        },
        core_alloc::fmt,
    },
};

/// An owned pointer to a bump-allocated `T` value, that runs `Drop`
/// implementations.
///
/// See the [module-level documentation][crate::boxed] for more details.
#[repr(transparent)]
pub struct Box<'a, T: ?Sized>(&'a mut T);

impl<'a, T> Box<'a, T> {
    /// Allocates memory on the heap and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// let five = Box::new_in(5, &b);
    /// ```
    #[inline(always)]
    pub fn new_in(x: T, a: &'a Bump) -> Box<'a, T> {
        Box(a.alloc(x))
    }

    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
    /// `x` will be pinned in memory and unable to be moved.
    #[inline(always)]
    pub fn pin_in(x: T, a: &'a Bump) -> Pin<Box<'a, T>> {
        Box(a.alloc(x)).into()
    }

    /// Consumes the `Box`, returning the wrapped value.
    ///
    /// # Examples
    ///
    /// ```
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// let hello = Box::new_in("hello".to_owned(), &b);
    /// assert_eq!(Box::into_inner(hello), "hello");
    /// ```
    pub fn into_inner(b: Box<'a, T>) -> T {
        // `Box::into_raw` returns a pointer that is properly aligned and non-null.
        // The underlying `Bump` only frees the memory, but won't call the destructor.
        unsafe { core::ptr::read(Box::into_raw(b)) }
    }
}

impl<'a, T: ?Sized> Box<'a, T> {
    /// Constructs a box from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the
    /// resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. For this
    /// to be safe, the memory must have been allocated in accordance
    /// with the memory layout used by `Box` .
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    /// # Examples
    ///
    /// Recreate a `Box` which was previously converted to a raw pointer
    /// using [`Box::into_raw`]:
    /// ```
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// let x = Box::new_in(5, &b);
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) }; // Note that new `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
    /// ```
    /// Manually create a `Box` from scratch by using the bump allocator:
    /// ```
    /// use std::alloc::{alloc, Layout};
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// unsafe {
    ///     let ptr = b.alloc_layout(Layout::new::<i32>()).as_ptr() as *mut i32;
    ///     *ptr = 5;
    ///     let x = Box::from_raw(ptr); // Note that `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
    /// }
    /// ```
    #[inline]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        Box(&mut *raw)
    }

    /// Consumes the `Box`, returning a wrapped raw pointer.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the
    /// value previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T`. The easiest way to
    /// do this is to convert the raw pointer back into a `Box` with the
    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
    /// the cleanup.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
    /// for automatic cleanup:
    /// ```
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// let x = Box::new_in(String::from("Hello"), &b);
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) }; // Note that new `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
    /// ```
    /// Manual cleanup by explicitly running the destructor:
    /// ```
    /// use std::ptr;
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// let mut x = Box::new_in(String::from("Hello"), &b);
    /// let p = Box::into_raw(x);
    /// unsafe {
    ///     ptr::drop_in_place(p);
    /// }
    /// ```
    #[inline]
    pub fn into_raw(b: Box<'a, T>) -> *mut T {
        let mut b = ManuallyDrop::new(b);
        b.deref_mut().0 as *mut T
    }

    /// Consumes and leaks the `Box`, returning a mutable reference,
    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
    /// `'a`. If the type has only static references, or none at all, then this
    /// may be chosen to be `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, the reference should first be wrapped
    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
    /// then be dropped which will properly destroy `T` and release the
    /// allocated memory.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// use bumpalo::{Bump, boxed::Box};
    ///
    /// let b = Bump::new();
    ///
    /// let x = Box::new_in(41, &b);
    /// let reference: &mut usize = Box::leak(x);
    /// *reference += 1;
    /// assert_eq!(*reference, 42);
    /// ```
    ///
    ///```
    /// # #[cfg(feature = "collections")]
    /// # {
    /// use bumpalo::{Bump, boxed::Box, vec};
    ///
    /// let b = Bump::new();
    ///
    /// let x = vec![in &b; 1, 2, 3].into_boxed_slice();
    /// let reference = Box::leak(x);
    /// reference[0] = 4;
    /// assert_eq!(*reference, [4, 2, 3]);
    /// # }
    ///```
    #[inline]
    pub fn leak(b: Box<'a, T>) -> &'a mut T {
        unsafe { &mut *Box::into_raw(b) }
    }
}

impl<'a, T: ?Sized> Drop for Box<'a, T> {
    fn drop(&mut self) {
        unsafe {
            // `Box` owns value of `T`, but not memory behind it.
            core::ptr::drop_in_place(self.0);
        }
    }
}

impl<'a, T> Default for Box<'a, [T]> {
    fn default() -> Box<'a, [T]> {
        // It should be OK to `drop_in_place` empty slice of anything.
        Box(&mut [])
    }
}

impl<'a> Default for Box<'a, str> {
    fn default() -> Box<'a, str> {
        // Empty slice is valid string.
        // It should be OK to `drop_in_place` empty str.
        unsafe { Box::from_raw(Box::into_raw(Box::<[u8]>::default()) as *mut str) }
    }
}

impl<'a, 'b, T: ?Sized + PartialEq> PartialEq<Box<'b, T>> for Box<'a, T> {
    #[inline]
    fn eq(&self, other: &Box<'b, T>) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &Box<'b, T>) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}

impl<'a, 'b, T: ?Sized + PartialOrd> PartialOrd<Box<'b, T>> for Box<'a, T> {
    #[inline]
    fn partial_cmp(&self, other: &Box<'b, T>) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Box<'b, T>) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &Box<'b, T>) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &Box<'b, T>) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &Box<'b, T>) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}

impl<'a, T: ?Sized + Ord> Ord for Box<'a, T> {
    #[inline]
    fn cmp(&self, other: &Box<'a, T>) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}

impl<'a, T: ?Sized + Eq> Eq for Box<'a, T> {}

impl<'a, T: ?Sized + Hash> Hash for Box<'a, T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

impl<'a, T: ?Sized + Hasher> Hasher for Box<'a, T> {
    fn finish(&self) -> u64 {
        (**self).finish()
    }
    fn write(&mut self, bytes: &[u8]) {
        (**self).write(bytes)
    }
    fn write_u8(&mut self, i: u8) {
        (**self).write_u8(i)
    }
    fn write_u16(&mut self, i: u16) {
        (**self).write_u16(i)
    }
    fn write_u32(&mut self, i: u32) {
        (**self).write_u32(i)
    }
    fn write_u64(&mut self, i: u64) {
        (**self).write_u64(i)
    }
    fn write_u128(&mut self, i: u128) {
        (**self).write_u128(i)
    }
    fn write_usize(&mut self, i: usize) {
        (**self).write_usize(i)
    }
    fn write_i8(&mut self, i: i8) {
        (**self).write_i8(i)
    }
    fn write_i16(&mut self, i: i16) {
        (**self).write_i16(i)
    }
    fn write_i32(&mut self, i: i32) {
        (**self).write_i32(i)
    }
    fn write_i64(&mut self, i: i64) {
        (**self).write_i64(i)
    }
    fn write_i128(&mut self, i: i128) {
        (**self).write_i128(i)
    }
    fn write_isize(&mut self, i: isize) {
        (**self).write_isize(i)
    }
}

impl<'a, T: ?Sized> From<Box<'a, T>> for Pin<Box<'a, T>> {
    /// Converts a `Box<T>` into a `Pin<Box<T>>`.
    ///
    /// This conversion does not allocate on the heap and happens in place.
    fn from(boxed: Box<'a, T>) -> Self {
        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
        // when `T: !Unpin`,  so it's safe to pin it directly without any
        // additional requirements.
        unsafe { Pin::new_unchecked(boxed) }
    }
}

impl<'a> Box<'a, dyn Any> {
    #[inline]
    /// Attempt to downcast the box to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<'a, T>, Box<'a, dyn Any>> {
        if self.is::<T>() {
            unsafe {
                let raw: *mut dyn Any = Box::into_raw(self);
                Ok(Box::from_raw(raw as *mut T))
            }
        } else {
            Err(self)
        }
    }
}

impl<'a> Box<'a, dyn Any + Send> {
    #[inline]
    /// Attempt to downcast the box to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<dyn Any + Send>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Box::new(my_string));
    /// print_if_string(Box::new(0i8));
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<'a, T>, Box<'a, dyn Any + Send>> {
        if self.is::<T>() {
            unsafe {
                let raw: *mut (dyn Any + Send) = Box::into_raw(self);
                Ok(Box::from_raw(raw as *mut T))
            }
        } else {
            Err(self)
        }
    }
}

impl<'a, T: fmt::Display + ?Sized> fmt::Display for Box<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'a, T: fmt::Debug + ?Sized> fmt::Debug for Box<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> fmt::Pointer for Box<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // It's not possible to extract the inner Uniq directly from the Box,
        // instead we cast it to a *const which aliases the Unique
        let ptr: *const T = &**self;
        fmt::Pointer::fmt(&ptr, f)
    }
}

impl<'a, T: ?Sized> Deref for Box<'a, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &*self.0
    }
}

impl<'a, T: ?Sized> DerefMut for Box<'a, T> {
    fn deref_mut(&mut self) -> &mut T {
        self.0
    }
}

impl<'a, I: Iterator + ?Sized> Iterator for Box<'a, I> {
    type Item = I::Item;
    fn next(&mut self) -> Option<I::Item> {
        (**self).next()
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
    fn nth(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth(n)
    }
    fn last(self) -> Option<I::Item> {
        #[inline]
        fn some<T>(_: Option<T>, x: T) -> Option<T> {
            Some(x)
        }
        self.fold(None, some)
    }
}

impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<'a, I> {
    fn next_back(&mut self) -> Option<I::Item> {
        (**self).next_back()
    }
    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth_back(n)
    }
}
impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<'a, I> {
    fn len(&self) -> usize {
        (**self).len()
    }
}

impl<'a, I: FusedIterator + ?Sized> FusedIterator for Box<'a, I> {}

#[cfg(feature = "collections")]
impl<'a, A> Box<'a, [A]> {
    /// Creates a value from an iterator.
    /// This method is an adapted version of [`FromIterator::from_iter`][from_iter].
    /// It cannot be made as that trait implementation given different signature.
    ///
    /// [from_iter]: https://doc.rust-lang.org/std/iter/trait.FromIterator.html#tymethod.from_iter
    ///
    /// # Examples
    ///
    /// Basic usage:
    /// ```
    /// use bumpalo::{Bump, boxed::Box, vec};
    ///
    /// let b = Bump::new();
    ///
    /// let five_fives = std::iter::repeat(5).take(5);
    /// let slice = Box::from_iter_in(five_fives, &b);
    /// assert_eq!(vec![in &b; 5, 5, 5, 5, 5], &*slice);
    /// ```
    pub fn from_iter_in<T: IntoIterator<Item = A>>(iter: T, a: &'a Bump) -> Self {
        use crate::collections::Vec;
        let mut vec = Vec::new_in(a);
        vec.extend(iter);
        vec.into_boxed_slice()
    }
}

impl<'a, T: ?Sized> borrow::Borrow<T> for Box<'a, T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

impl<'a, T: ?Sized> borrow::BorrowMut<T> for Box<'a, T> {
    fn borrow_mut(&mut self) -> &mut T {
        &mut **self
    }
}

impl<'a, T: ?Sized> AsRef<T> for Box<'a, T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

impl<'a, T: ?Sized> AsMut<T> for Box<'a, T> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

impl<'a, T: ?Sized> Unpin for Box<'a, T> {}

impl<'a, F: ?Sized + Future + Unpin> Future for Box<'a, F> {
    type Output = F::Output;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        F::poll(Pin::new(&mut *self), cx)
    }
}

/// This impl replaces unsize coercion.
impl<'a, T, const N: usize> From<Box<'a, [T; N]>> for Box<'a, [T]> {
    fn from(arr: Box<'a, [T; N]>) -> Box<'a, [T]> {
        let mut arr = ManuallyDrop::new(arr);
        let ptr = core::ptr::slice_from_raw_parts_mut(arr.as_mut_ptr(), N);
        unsafe { Box::from_raw(ptr) }
    }
}

/// This impl replaces unsize coercion.
impl<'a, T, const N: usize> TryFrom<Box<'a, [T]>> for Box<'a, [T; N]> {
    type Error = Box<'a, [T]>;
    fn try_from(slice: Box<'a, [T]>) -> Result<Box<'a, [T; N]>, Box<'a, [T]>> {
        if slice.len() == N {
            let mut slice = ManuallyDrop::new(slice);
            let ptr = slice.as_mut_ptr() as *mut [T; N];
            Ok(unsafe { Box::from_raw(ptr) })
        } else {
            Err(slice)
        }
    }
}