1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
//! A pointer type for bump allocation.
//!
//! [`Box<'a, T>`] provides the simplest form of
//! bump allocation in `bumpalo`. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//!
//! let b = Bump::new();
//!
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new_in(val, &b);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//!
//! let b = Bump::new();
//!
//! let boxed: Box<u8> = Box::new_in(5, &b);
//! let val: u8 = *boxed;
//! ```
//!
//! Running [`Drop`] implementations on bump-allocated values:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//! use std::sync::atomic::{AtomicUsize, Ordering};
//!
//! static NUM_DROPPED: AtomicUsize = AtomicUsize::new(0);
//!
//! struct CountDrops;
//!
//! impl Drop for CountDrops {
//! fn drop(&mut self) {
//! NUM_DROPPED.fetch_add(1, Ordering::SeqCst);
//! }
//! }
//!
//! // Create a new bump arena.
//! let bump = Bump::new();
//!
//! // Create a `CountDrops` inside the bump arena.
//! let mut c = Box::new_in(CountDrops, &bump);
//!
//! // No `CountDrops` have been dropped yet.
//! assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 0);
//!
//! // Drop our `Box<CountDrops>`.
//! drop(c);
//!
//! // Its `Drop` implementation was run, and so `NUM_DROPS` has been incremented.
//! assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 1);
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! use bumpalo::{Bump, boxed::Box};
//!
//! let b = Bump::new();
//!
//! #[derive(Debug)]
//! enum List<'a, T> {
//! Cons(T, Box<'a, List<'a, T>>),
//! Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::new_in(List::Cons(2, Box::new_in(List::Nil, &b)), &b));
//! println!("{:?}", list);
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a [`Box<'a, T>`], which has a defined size, we know how
//! big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the provided [`Bump`] allocator for
//! its allocation. It is valid to convert both ways between a [`Box`] and a
//! pointer allocated with the [`Bump`] allocator, given that the
//! [`Layout`] used with the allocator is correct for the type. More precisely,
//! a `value: *mut T` that has been allocated with the [`Bump`] allocator
//! with `Layout::for_value(&*value)` may be converted into a box using
//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
//! T` obtained from [`Box::<T>::into_raw`] will be deallocated by the
//! [`Bump`] allocator with [`Layout::for_value(&*value)`].
//!
//! Note that roundtrip `Box::from_raw(Box::into_raw(b))` looses the lifetime bound to the
//! [`Bump`] immutable borrow which guarantees that the allocator will not be reset
//! and memory will not be freed.
//!
//! [dereferencing]: https://doc.rust-lang.org/std/ops/trait.Deref.html
//! [`Box`]: struct.Box.html
//! [`Box<'a, T>`]: struct.Box.html
//! [`Box::<T>::from_raw(value)`]: struct.Box.html#method.from_raw
//! [`Box::<T>::into_raw`]: struct.Box.html#method.into_raw
//! [`Bump`]: ../struct.Bump.html
//! [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
//! [`Layout`]: https://doc.rust-lang.org/std/alloc/struct.Layout.html
//! [`Layout::for_value(&*value)`]: https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.for_value
use {
crate::Bump,
{
core::{
any::Any,
borrow,
cmp::Ordering,
convert::TryFrom,
future::Future,
hash::{Hash, Hasher},
iter::FusedIterator,
mem::ManuallyDrop,
ops::{Deref, DerefMut},
pin::Pin,
task::{Context, Poll},
},
core_alloc::fmt,
},
};
/// An owned pointer to a bump-allocated `T` value, that runs `Drop`
/// implementations.
///
/// See the [module-level documentation][crate::boxed] for more details.
#[repr(transparent)]
pub struct Box<'a, T: ?Sized>(&'a mut T);
impl<'a, T> Box<'a, T> {
/// Allocates memory on the heap and then places `x` into it.
///
/// This doesn't actually allocate if `T` is zero-sized.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// let five = Box::new_in(5, &b);
/// ```
#[inline(always)]
pub fn new_in(x: T, a: &'a Bump) -> Box<'a, T> {
Box(a.alloc(x))
}
/// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
/// `x` will be pinned in memory and unable to be moved.
#[inline(always)]
pub fn pin_in(x: T, a: &'a Bump) -> Pin<Box<'a, T>> {
Box(a.alloc(x)).into()
}
/// Consumes the `Box`, returning the wrapped value.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// let hello = Box::new_in("hello".to_owned(), &b);
/// assert_eq!(Box::into_inner(hello), "hello");
/// ```
pub fn into_inner(b: Box<'a, T>) -> T {
// `Box::into_raw` returns a pointer that is properly aligned and non-null.
// The underlying `Bump` only frees the memory, but won't call the destructor.
unsafe { core::ptr::read(Box::into_raw(b)) }
}
}
impl<'a, T: ?Sized> Box<'a, T> {
/// Constructs a box from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the memory layout used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a raw pointer
/// using [`Box::into_raw`]:
/// ```
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// let x = Box::new_in(5, &b);
/// let ptr = Box::into_raw(x);
/// let x = unsafe { Box::from_raw(ptr) }; // Note that new `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
/// ```
/// Manually create a `Box` from scratch by using the bump allocator:
/// ```
/// use std::alloc::{alloc, Layout};
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// unsafe {
/// let ptr = b.alloc_layout(Layout::new::<i32>()).as_ptr() as *mut i32;
/// *ptr = 5;
/// let x = Box::from_raw(ptr); // Note that `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
/// }
/// ```
#[inline]
pub unsafe fn from_raw(raw: *mut T) -> Self {
Box(&mut *raw)
}
/// Consumes the `Box`, returning a wrapped raw pointer.
///
/// The pointer will be properly aligned and non-null.
///
/// After calling this function, the caller is responsible for the
/// value previously managed by the `Box`. In particular, the
/// caller should properly destroy `T`. The easiest way to
/// do this is to convert the raw pointer back into a `Box` with the
/// [`Box::from_raw`] function, allowing the `Box` destructor to perform
/// the cleanup.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// # Examples
///
/// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
/// for automatic cleanup:
/// ```
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// let x = Box::new_in(String::from("Hello"), &b);
/// let ptr = Box::into_raw(x);
/// let x = unsafe { Box::from_raw(ptr) }; // Note that new `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
/// ```
/// Manual cleanup by explicitly running the destructor:
/// ```
/// use std::ptr;
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// let mut x = Box::new_in(String::from("Hello"), &b);
/// let p = Box::into_raw(x);
/// unsafe {
/// ptr::drop_in_place(p);
/// }
/// ```
#[inline]
pub fn into_raw(b: Box<'a, T>) -> *mut T {
let mut b = ManuallyDrop::new(b);
b.deref_mut().0 as *mut T
}
/// Consumes and leaks the `Box`, returning a mutable reference,
/// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
/// `'a`. If the type has only static references, or none at all, then this
/// may be chosen to be `'static`.
///
/// This function is mainly useful for data that lives for the remainder of
/// the program's life. Dropping the returned reference will cause a memory
/// leak. If this is not acceptable, the reference should first be wrapped
/// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
/// then be dropped which will properly destroy `T` and release the
/// allocated memory.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::leak(b)` instead of `b.leak()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// # Examples
///
/// Simple usage:
///
/// ```
/// use bumpalo::{Bump, boxed::Box};
///
/// let b = Bump::new();
///
/// let x = Box::new_in(41, &b);
/// let reference: &mut usize = Box::leak(x);
/// *reference += 1;
/// assert_eq!(*reference, 42);
/// ```
///
///```
/// # #[cfg(feature = "collections")]
/// # {
/// use bumpalo::{Bump, boxed::Box, vec};
///
/// let b = Bump::new();
///
/// let x = vec![in &b; 1, 2, 3].into_boxed_slice();
/// let reference = Box::leak(x);
/// reference[0] = 4;
/// assert_eq!(*reference, [4, 2, 3]);
/// # }
///```
#[inline]
pub fn leak(b: Box<'a, T>) -> &'a mut T {
unsafe { &mut *Box::into_raw(b) }
}
}
impl<'a, T: ?Sized> Drop for Box<'a, T> {
fn drop(&mut self) {
unsafe {
// `Box` owns value of `T`, but not memory behind it.
core::ptr::drop_in_place(self.0);
}
}
}
impl<'a, T> Default for Box<'a, [T]> {
fn default() -> Box<'a, [T]> {
// It should be OK to `drop_in_place` empty slice of anything.
Box(&mut [])
}
}
impl<'a> Default for Box<'a, str> {
fn default() -> Box<'a, str> {
// Empty slice is valid string.
// It should be OK to `drop_in_place` empty str.
unsafe { Box::from_raw(Box::into_raw(Box::<[u8]>::default()) as *mut str) }
}
}
impl<'a, 'b, T: ?Sized + PartialEq> PartialEq<Box<'b, T>> for Box<'a, T> {
#[inline]
fn eq(&self, other: &Box<'b, T>) -> bool {
PartialEq::eq(&**self, &**other)
}
#[inline]
fn ne(&self, other: &Box<'b, T>) -> bool {
PartialEq::ne(&**self, &**other)
}
}
impl<'a, 'b, T: ?Sized + PartialOrd> PartialOrd<Box<'b, T>> for Box<'a, T> {
#[inline]
fn partial_cmp(&self, other: &Box<'b, T>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
#[inline]
fn lt(&self, other: &Box<'b, T>) -> bool {
PartialOrd::lt(&**self, &**other)
}
#[inline]
fn le(&self, other: &Box<'b, T>) -> bool {
PartialOrd::le(&**self, &**other)
}
#[inline]
fn ge(&self, other: &Box<'b, T>) -> bool {
PartialOrd::ge(&**self, &**other)
}
#[inline]
fn gt(&self, other: &Box<'b, T>) -> bool {
PartialOrd::gt(&**self, &**other)
}
}
impl<'a, T: ?Sized + Ord> Ord for Box<'a, T> {
#[inline]
fn cmp(&self, other: &Box<'a, T>) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
impl<'a, T: ?Sized + Eq> Eq for Box<'a, T> {}
impl<'a, T: ?Sized + Hash> Hash for Box<'a, T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
impl<'a, T: ?Sized + Hasher> Hasher for Box<'a, T> {
fn finish(&self) -> u64 {
(**self).finish()
}
fn write(&mut self, bytes: &[u8]) {
(**self).write(bytes)
}
fn write_u8(&mut self, i: u8) {
(**self).write_u8(i)
}
fn write_u16(&mut self, i: u16) {
(**self).write_u16(i)
}
fn write_u32(&mut self, i: u32) {
(**self).write_u32(i)
}
fn write_u64(&mut self, i: u64) {
(**self).write_u64(i)
}
fn write_u128(&mut self, i: u128) {
(**self).write_u128(i)
}
fn write_usize(&mut self, i: usize) {
(**self).write_usize(i)
}
fn write_i8(&mut self, i: i8) {
(**self).write_i8(i)
}
fn write_i16(&mut self, i: i16) {
(**self).write_i16(i)
}
fn write_i32(&mut self, i: i32) {
(**self).write_i32(i)
}
fn write_i64(&mut self, i: i64) {
(**self).write_i64(i)
}
fn write_i128(&mut self, i: i128) {
(**self).write_i128(i)
}
fn write_isize(&mut self, i: isize) {
(**self).write_isize(i)
}
}
impl<'a, T: ?Sized> From<Box<'a, T>> for Pin<Box<'a, T>> {
/// Converts a `Box<T>` into a `Pin<Box<T>>`.
///
/// This conversion does not allocate on the heap and happens in place.
fn from(boxed: Box<'a, T>) -> Self {
// It's not possible to move or replace the insides of a `Pin<Box<T>>`
// when `T: !Unpin`, so it's safe to pin it directly without any
// additional requirements.
unsafe { Pin::new_unchecked(boxed) }
}
}
impl<'a> Box<'a, dyn Any> {
#[inline]
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// ```
pub fn downcast<T: Any>(self) -> Result<Box<'a, T>, Box<'a, dyn Any>> {
if self.is::<T>() {
unsafe {
let raw: *mut dyn Any = Box::into_raw(self);
Ok(Box::from_raw(raw as *mut T))
}
} else {
Err(self)
}
}
}
impl<'a> Box<'a, dyn Any + Send> {
#[inline]
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any + Send>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// ```
pub fn downcast<T: Any>(self) -> Result<Box<'a, T>, Box<'a, dyn Any + Send>> {
if self.is::<T>() {
unsafe {
let raw: *mut (dyn Any + Send) = Box::into_raw(self);
Ok(Box::from_raw(raw as *mut T))
}
} else {
Err(self)
}
}
}
impl<'a, T: fmt::Display + ?Sized> fmt::Display for Box<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'a, T: fmt::Debug + ?Sized> fmt::Debug for Box<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, T: ?Sized> fmt::Pointer for Box<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr: *const T = &**self;
fmt::Pointer::fmt(&ptr, f)
}
}
impl<'a, T: ?Sized> Deref for Box<'a, T> {
type Target = T;
fn deref(&self) -> &T {
&*self.0
}
}
impl<'a, T: ?Sized> DerefMut for Box<'a, T> {
fn deref_mut(&mut self) -> &mut T {
self.0
}
}
impl<'a, I: Iterator + ?Sized> Iterator for Box<'a, I> {
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
(**self).next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(**self).size_hint()
}
fn nth(&mut self, n: usize) -> Option<I::Item> {
(**self).nth(n)
}
fn last(self) -> Option<I::Item> {
#[inline]
fn some<T>(_: Option<T>, x: T) -> Option<T> {
Some(x)
}
self.fold(None, some)
}
}
impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<'a, I> {
fn next_back(&mut self) -> Option<I::Item> {
(**self).next_back()
}
fn nth_back(&mut self, n: usize) -> Option<I::Item> {
(**self).nth_back(n)
}
}
impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<'a, I> {
fn len(&self) -> usize {
(**self).len()
}
}
impl<'a, I: FusedIterator + ?Sized> FusedIterator for Box<'a, I> {}
#[cfg(feature = "collections")]
impl<'a, A> Box<'a, [A]> {
/// Creates a value from an iterator.
/// This method is an adapted version of [`FromIterator::from_iter`][from_iter].
/// It cannot be made as that trait implementation given different signature.
///
/// [from_iter]: https://doc.rust-lang.org/std/iter/trait.FromIterator.html#tymethod.from_iter
///
/// # Examples
///
/// Basic usage:
/// ```
/// use bumpalo::{Bump, boxed::Box, vec};
///
/// let b = Bump::new();
///
/// let five_fives = std::iter::repeat(5).take(5);
/// let slice = Box::from_iter_in(five_fives, &b);
/// assert_eq!(vec![in &b; 5, 5, 5, 5, 5], &*slice);
/// ```
pub fn from_iter_in<T: IntoIterator<Item = A>>(iter: T, a: &'a Bump) -> Self {
use crate::collections::Vec;
let mut vec = Vec::new_in(a);
vec.extend(iter);
vec.into_boxed_slice()
}
}
impl<'a, T: ?Sized> borrow::Borrow<T> for Box<'a, T> {
fn borrow(&self) -> &T {
&**self
}
}
impl<'a, T: ?Sized> borrow::BorrowMut<T> for Box<'a, T> {
fn borrow_mut(&mut self) -> &mut T {
&mut **self
}
}
impl<'a, T: ?Sized> AsRef<T> for Box<'a, T> {
fn as_ref(&self) -> &T {
&**self
}
}
impl<'a, T: ?Sized> AsMut<T> for Box<'a, T> {
fn as_mut(&mut self) -> &mut T {
&mut **self
}
}
impl<'a, T: ?Sized> Unpin for Box<'a, T> {}
impl<'a, F: ?Sized + Future + Unpin> Future for Box<'a, F> {
type Output = F::Output;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
F::poll(Pin::new(&mut *self), cx)
}
}
/// This impl replaces unsize coercion.
impl<'a, T, const N: usize> From<Box<'a, [T; N]>> for Box<'a, [T]> {
fn from(arr: Box<'a, [T; N]>) -> Box<'a, [T]> {
let mut arr = ManuallyDrop::new(arr);
let ptr = core::ptr::slice_from_raw_parts_mut(arr.as_mut_ptr(), N);
unsafe { Box::from_raw(ptr) }
}
}
/// This impl replaces unsize coercion.
impl<'a, T, const N: usize> TryFrom<Box<'a, [T]>> for Box<'a, [T; N]> {
type Error = Box<'a, [T]>;
fn try_from(slice: Box<'a, [T]>) -> Result<Box<'a, [T; N]>, Box<'a, [T]>> {
if slice.len() == N {
let mut slice = ManuallyDrop::new(slice);
let ptr = slice.as_mut_ptr() as *mut [T; N];
Ok(unsafe { Box::from_raw(ptr) })
} else {
Err(slice)
}
}
}