Type Alias euclid::default::Rect

source ·
pub type Rect<T> = Rect<T, UnknownUnit>;

Aliased Type§

struct Rect<T> {
    pub origin: Point2D<T, UnknownUnit>,
    pub size: Size2D<T, UnknownUnit>,
}

Fields§

§origin: Point2D<T, UnknownUnit>§size: Size2D<T, UnknownUnit>

Implementations§

source§

impl<T, U> Rect<T, U>

source

pub const fn new(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self

Constructor.

source§

impl<T, U> Rect<T, U>where T: Zero,

source

pub fn zero() -> Self

Constructor, setting all sides to zero.

source

pub fn from_size(size: Size2D<T, U>) -> Self

Creates a rect of the given size, at offset zero.

source§

impl<T, U> Rect<T, U>where T: Copy + Add<T, Output = T>,

source

pub fn min(&self) -> Point2D<T, U>

source

pub fn max(&self) -> Point2D<T, U>

source

pub fn max_x(&self) -> T

source

pub fn min_x(&self) -> T

source

pub fn max_y(&self) -> T

source

pub fn min_y(&self) -> T

source

pub fn width(&self) -> T

source

pub fn height(&self) -> T

source

pub fn x_range(&self) -> Range<T>

source

pub fn y_range(&self) -> Range<T>

source

pub fn translate(&self, by: Vector2D<T, U>) -> Self

Returns the same rectangle, translated by a vector.

source

pub fn to_box2d(&self) -> Box2D<T, U>

source§

impl<T, U> Rect<T, U>where T: Copy + PartialOrd + Add<T, Output = T>,

source

pub fn contains(&self, p: Point2D<T, U>) -> bool

Returns true if this rectangle contains the point. Points are considered in the rectangle if they are on the left or top edge, but outside if they are on the right or bottom edge.

source

pub fn intersects(&self, other: &Self) -> bool

source§

impl<T, U> Rect<T, U>where T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,

source

pub fn intersection(&self, other: &Self) -> Option<Self>

source§

impl<T, U> Rect<T, U>where T: Copy + Add<T, Output = T> + Sub<T, Output = T>,

source

pub fn inflate(&self, width: T, height: T) -> Self

source§

impl<T, U> Rect<T, U>where T: Copy + Zero + PartialOrd + Add<T, Output = T>,

source

pub fn contains_rect(&self, rect: &Self) -> bool

Returns true if this rectangle contains the interior of rect. Always returns true if rect is empty, and always returns false if rect is nonempty but this rectangle is empty.

source§

impl<T, U> Rect<T, U>where T: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,

source

pub fn inner_rect(&self, offsets: SideOffsets2D<T, U>) -> Self

Calculate the size and position of an inner rectangle.

Subtracts the side offsets from all sides. The horizontal and vertical offsets must not be larger than the original side length. This method assumes y oriented downward.

source§

impl<T, U> Rect<T, U>where T: Copy + Add<T, Output = T> + Sub<T, Output = T>,

source

pub fn outer_rect(&self, offsets: SideOffsets2D<T, U>) -> Self

Calculate the size and position of an outer rectangle.

Add the offsets to all sides. The expanded rectangle is returned. This method assumes y oriented downward.

source§

impl<T, U> Rect<T, U>where T: Copy + Zero + PartialOrd + Sub<T, Output = T>,

source

pub fn from_points<I>(points: I) -> Selfwhere I: IntoIterator, I::Item: Borrow<Point2D<T, U>>,

Returns the smallest rectangle defined by the top/bottom/left/right-most points provided as parameter.

Note: This function has a behavior that can be surprising because the right-most and bottom-most points are exactly on the edge of the rectangle while the contains function is has exclusive semantic on these edges. This means that the right-most and bottom-most points provided to from_points will count as not contained by the rect. This behavior may change in the future.

source§

impl<T, U> Rect<T, U>where T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,

source

pub fn lerp(&self, other: Self, t: T) -> Self

Linearly interpolate between this rectangle and another rectangle.

source§

impl<T, U> Rect<T, U>where T: Copy + One + Add<Output = T> + Div<Output = T>,

source

pub fn center(&self) -> Point2D<T, U>

source§

impl<T, U> Rect<T, U>where T: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero,

source

pub fn union(&self, other: &Self) -> Self

source§

impl<T, U> Rect<T, U>

source

pub fn scale<S: Copy>(&self, x: S, y: S) -> Selfwhere T: Copy + Mul<S, Output = T>,

source§

impl<T: Copy + Mul<T, Output = T>, U> Rect<T, U>

source

pub fn area(&self) -> T

source§

impl<T: Copy + Zero + PartialOrd, U> Rect<T, U>

source

pub fn is_empty(&self) -> bool

source§

impl<T: Copy + Zero + PartialOrd, U> Rect<T, U>

source

pub fn to_non_empty(&self) -> Option<Self>

source§

impl<T: Copy, U> Rect<T, U>

source

pub fn to_untyped(&self) -> Rect<T, UnknownUnit>

Drop the units, preserving only the numeric value.

source

pub fn from_untyped(r: &Rect<T, UnknownUnit>) -> Rect<T, U>

Tag a unitless value with units.

source

pub fn cast_unit<V>(&self) -> Rect<T, V>

Cast the unit

source§

impl<T: NumCast + Copy, U> Rect<T, U>

source

pub fn cast<NewT: NumCast>(&self) -> Rect<NewT, U>

Cast from one numeric representation to another, preserving the units.

When casting from floating point to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), round_in or round_out() before casting.

source

pub fn try_cast<NewT: NumCast>(&self) -> Option<Rect<NewT, U>>

Fallible cast from one numeric representation to another, preserving the units.

When casting from floating point to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), round_in or round_out() before casting.

source

pub fn to_f32(&self) -> Rect<f32, U>

Cast into an f32 rectangle.

source

pub fn to_f64(&self) -> Rect<f64, U>

Cast into an f64 rectangle.

source

pub fn to_usize(&self) -> Rect<usize, U>

Cast into an usize rectangle, truncating decimals if any.

When casting from floating point rectangles, it is worth considering whether to round(), round_in() or round_out() before the cast in order to obtain the desired conversion behavior.

source

pub fn to_u32(&self) -> Rect<u32, U>

Cast into an u32 rectangle, truncating decimals if any.

When casting from floating point rectangles, it is worth considering whether to round(), round_in() or round_out() before the cast in order to obtain the desired conversion behavior.

source

pub fn to_u64(&self) -> Rect<u64, U>

Cast into an u64 rectangle, truncating decimals if any.

When casting from floating point rectangles, it is worth considering whether to round(), round_in() or round_out() before the cast in order to obtain the desired conversion behavior.

source

pub fn to_i32(&self) -> Rect<i32, U>

Cast into an i32 rectangle, truncating decimals if any.

When casting from floating point rectangles, it is worth considering whether to round(), round_in() or round_out() before the cast in order to obtain the desired conversion behavior.

source

pub fn to_i64(&self) -> Rect<i64, U>

Cast into an i64 rectangle, truncating decimals if any.

When casting from floating point rectangles, it is worth considering whether to round(), round_in() or round_out() before the cast in order to obtain the desired conversion behavior.

source§

impl<T: Float, U> Rect<T, U>

source

pub fn is_finite(self) -> bool

Returns true if all members are finite.

source§

impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> Rect<T, U>

source

pub fn round(&self) -> Self

Return a rectangle with edges rounded to integer coordinates, such that the returned rectangle has the same set of pixel centers as the original one. Edges at offset 0.5 round up. Suitable for most places where integral device coordinates are needed, but note that any translation should be applied first to avoid pixel rounding errors. Note that this is not rounding to nearest integer if the values are negative. They are always rounding as floor(n + 0.5).

Usage notes

Note, that when using with floating-point T types that method can significantly loose precision for large values, so if you need to call this method very often it is better to use Box2D.

source

pub fn round_in(&self) -> Self

Return a rectangle with edges rounded to integer coordinates, such that the original rectangle contains the resulting rectangle.

Usage notes

Note, that when using with floating-point T types that method can significantly loose precision for large values, so if you need to call this method very often it is better to use Box2D.

source

pub fn round_out(&self) -> Self

Return a rectangle with edges rounded to integer coordinates, such that the original rectangle is contained in the resulting rectangle.

Usage notes

Note, that when using with floating-point T types that method can significantly loose precision for large values, so if you need to call this method very often it is better to use Box2D.

Trait Implementations§

source§

impl<T: Clone, U> Clone for Rect<T, U>

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug, U> Debug for Rect<T, U>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: Default, U> Default for Rect<T, U>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<'de, T, U> Deserialize<'de> for Rect<T, U>where T: Deserialize<'de>,

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Rect<T, U2>

§

type Output = Rect<<T as Div<T>>::Output, U1>

The resulting type after applying the / operator.
source§

fn div(self, scale: Scale<T, U1, U2>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: Copy + Div, U> Div<T> for Rect<T, U>

§

type Output = Rect<<T as Div<T>>::Output, U>

The resulting type after applying the / operator.
source§

fn div(self, scale: T) -> Self::Output

Performs the / operation. Read more
source§

impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Rect<T, U>

source§

fn div_assign(&mut self, scale: Scale<T, U, U>)

Performs the /= operation. Read more
source§

impl<T: Copy + DivAssign, U> DivAssign<T> for Rect<T, U>

source§

fn div_assign(&mut self, scale: T)

Performs the /= operation. Read more
source§

impl<T, U> From<Size2D<T, U>> for Rect<T, U>where T: Zero,

source§

fn from(size: Size2D<T, U>) -> Self

Converts to this type from the input type.
source§

impl<T: Hash, U> Hash for Rect<T, U>

source§

fn hash<H: Hasher>(&self, h: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Rect<T, U1>

§

type Output = Rect<<T as Mul<T>>::Output, U2>

The resulting type after applying the * operator.
source§

fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: Copy + Mul, U> Mul<T> for Rect<T, U>

§

type Output = Rect<<T as Mul<T>>::Output, U>

The resulting type after applying the * operator.
source§

fn mul(self, scale: T) -> Self::Output

Performs the * operation. Read more
source§

impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Rect<T, U>

source§

fn mul_assign(&mut self, scale: Scale<T, U, U>)

Performs the *= operation. Read more
source§

impl<T: Copy + MulAssign, U> MulAssign<T> for Rect<T, U>

source§

fn mul_assign(&mut self, scale: T)

Performs the *= operation. Read more
source§

impl<T: PartialEq, U> PartialEq<Rect<T, U>> for Rect<T, U>

source§

fn eq(&self, other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T, U> Serialize for Rect<T, U>where T: Serialize,

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<T: Copy, U> Copy for Rect<T, U>

source§

impl<T: Eq, U> Eq for Rect<T, U>